
COMP2119
Notes for HKU · Fall 2025

Author: Jax

Contact: enhanjax@connect.hku.hk

MORE notes on my website!

Made for personal use only. Unmodified re-distribution is allowed. Content for reference only.

https://jaxtam.dev/notes

Contents

1 Recursion 2

1.1 Recurrence relation . 2

1.2 Mathematical induction . 3

2 Algorithm Analysis 4

2.1 How do we assess time complexity? . 4

2.2 Asymptotic notation . 4

2.3 Time complexity of code . 6

3 Data Structures 8

3.1 Overview of data structures . 8

3.2 Core implementations . 8

3.3 Linear structures . 10

3.4 Non-linear structures . 10

3.4.1 Graph . 10

3.4.2 Trees . 11

3.4.3 Hash tables . 11

4 Examples & questions bank 14

1

1 Recursion

Solves a problem by breaking it down into smaller instances of the same problem. If you can solve a smaller
instance of the problem, you can solve a larger one.

1. Base Case(s): The simplest instance(s) of the problem that can be solved directly without further
recursion.

2. Recursive Case(s): More complex instances of the problem that are solved by breaking them down
and making recursive calls.

Tower of Hanoi
Goal: Move n disks from peg A =⇒ C using peg B.
Rules: Only one disk can be moved at a time, and a disk can only be placed on top of a larger disk.
We define the problem as H(num, from, to, via):

1. Move top n− 1 disks A =⇒ B via C: H(n− 1, A,B,C)

2. Move 1 disk A → C

3. Move top n− 1 disks B =⇒ C via A: H(n− 1, B, C,A)

1.1 Recurrence relation

Recurrence relation / equation

A mathematical equation which is defined in terms of itself.

f(n) =

 1 n = 1

2f(n− 1) + 1 n > 1

Solve a recurrence relation - subsitution method
We ”solve” a recurrence relation by finding a closed-form expression for f(n) in terms of n.

1. Expand the relation as f(n) to 3 levels
2. Observe the pattern of f(n)
3. Generalize the pattern in terms of the level k
4. Using the base case to define k in terms of n
5. Subsitute k back into the generalization

4.1

2

Relevant mathematics

1. Geometric series: Sn = a(1 + r + r2 + · · ·+ rn−1) = a rn−1
r−1

2. Arithmetic series: Sn = n(a1+an

2), n = number of terms, a = first / last term
3. Factorial: n! = n× (n− 1)× (n− 2)× · · · × 1

4. Falling factorial: nk = n(n− 1)(n− 2) · · · (n− k + 1) = n!
(n−k)!

5. Logarithm: ak = b =⇒ k = loga b

6. Logarithm property: klog a = alog k

The master theorem
The master theorem can give us the order of growth (Big Theta) of a recurrence relation.
For T (n) = a · T (nb) + f(n), T (1) = c, a, c > 0, b > 1, f(n) ∈ Θ(nk), d ≥ 0, we have:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

1.2 Mathematical induction

Mathematical induction
A method of mathematical proof that proves a statement for all natural numbers.

1. Base case: Prove the statement for the first natural number in the statement’s range.
2. Inductive step: Assume the statement is true for n, then prove it is also true for n+ 1.

4.2

3

2 Algorithm Analysis

We usually determine the efficiency of an algorithm by analyzing its time and space complexity.

Size of input
An input is a data structure that is given to an algorithm to solve a problem. The size of an input
is the number n of elements in the input.

2.1 How do we assess time complexity?

When we analyize time complexity, we are interested in the efficiency of an algorithm as a function of the
size of the input.

As different machines have varying speeds of processors, time is not a good fit for measuring algorithm
efficiency.

We can consider the number of operations an algorithm performs relative to the size of the input, which will
isolate the algorithm from the performing machines.

However, different operations have varying efficiencies, so instead we consider the growth rate of the total
number of operations as a function of the input size. The analysis of such is called Asymptotic analysis.

Time complexity
The rate of growth of the total number of operations an algorithm performs relative to size of
input.

Space complexity
The rate of growth of the total amount of memory an algorithm uses relative to size of input.

2.2 Asymptotic notation

Growth rate / Complexity: The basis of asymptotic notations

We are defining a certain function T(n) to represent the total number of operations with respect
to n (the size of the input).
When we say T (n) is A of (g(n)) (or T (n) ∈ A(g(n))), we are saying that the growth rate of T (n)
is bounded by A(g(n)) under a specific mathematical inequality defined by A.

4

General definition of asymptotic notations

For non-strict boundaries (≤≥)

T (n) ∈ A(g(n)) iff ∃ c > 0 :

T (n) ≃ c · g(n) ∀ n ≥ n0 > 0

For strict boundaries: <>

T (n) ∈ a(g(n)) if ∀ c > 0 ∃ n0 ≥ 0 :

T (n) ∼ c · g(n) ∀ n ≥ n0

Note that the ∈ is interchangable with =. The meaning does not really matter.

To prove non-strict boundaries, we need to show the existence of constants c, n0 that satisfies the
inequality. 4.3 4.4

Definition of all asymptotic notations

Notation Condition Asymptotic boundary Name
O(g) T (n) ≤ c · g(n) Upper Big O
Ω(g) T (n) ≥ c · g(n) Lower Big Omega
Θ(g) c1 · g(n) ≤ T (n) ≤ c2 · g(n) Tight Big Theta / Order of growth
o(g) T (n) < c · g(n) Strictly upper Little o
ω(g) T (n) > c · g(n) Strictly lower Little omega

Growth rate functions
We use the likeness of g(n) to describe the complexity of T (n). The following gives the common
growth rate functions (increasing order of growth):

1 <
√
n < log n < n < n log n < n2 < n3 < 2n < n! < nn

Note that the higher the growth rate, the more complex the algorithm.
Note the following growth rate equivilencies:

• log(n!) = Θ(n log(n)) (no need to prove)
• Θ(log2 n) = Θ(log10 n) as log2 n = log n

log 2 = c× log n

5

Identifying asymptotic growths

Non-strict: Identify the term with the highest growth rate in T (n) would be g(n).
Strict: Choose the next / previous growth rate function with reference to the list depending on if
it’s upper / lower.
You can use the same logic to determine if some f(n) is A/a of g(n).
Note that as the defintions are specified by an inequality, there could be multiple satisfying g(n)

for the same T (n) and all of them are valid. However, keep in mind the only useful g(n) for analysis
would be closest to the condition boundary.
If the function functuates, there is not a consistent growth rate unless a boundary is specified.

4.5

2.3 Time complexity of code

Operation of time complexities
By definition:

O(g) +O(g) = k ×O(g) = O(g)

O(g)×O(g) = O(g × g)

O(g1) +O(g2) = O(g2), g2 > g1 in terms of order of growth

Our goal is to examine how the runtime grows with respect to the input size. Consider the following example:� �
Times ran O()

def find_max(arr): # 1
if len(arr) == 0: # 1

return None # 1
max_val = arr[0] # 1
for num in arr: # n

if num > max_val: # n
max_val = num # n

return max_val # 1� �
It should be acknowledged that each operation / line would take different amounts of time to compute.
However, as we are interested in the runtime T (n)’s growth rate, we can treat all operations to take 1 unit
of time.

Hence, T (n) = O(1) +O(1) +O(1) +O(1) +O(n) +O(n) +O(n) +O(1) = O(n)

6

Typical growth rates and common occurance

Growth Occurance
1 Statments that run a set number of times with no respect to the input

size
log n Algorithms that solve a big problem by transformation into a series of

smaller problems, cutting the problem size by some constant fraction
at each step.

n ”for” loops that has n amount of iterations per program run
n log n Algorithms that solve a problem by breaking it up into smaller sub-

problems, solving them independently, and then combining the solu-
tions.

nk Nested ”for” loops that has n amount of iterations per program run

7

3 Data Structures

The purpose of a programme is to process data efficiently. A data structure is a way to group & store data
in a computer, and have pros and cons which make them suitable for different scenarios.

Operations
A data structure has the following operations:

• Access
• Insertion & deletion (start, end, middle)
• Search
• Sorting
• Merging

3.1 Overview of data structures

Linear vs. Non-linear
A Linear Data Structure has each item only relates to it’s front and back item.
A Non-linear Data Structure has each item can relate to multiple other items.

Abstract vs. Concrete data types

Abstract data types (ADT) is a concept which defines the operations that can be performed on a
data structure, without specifying the implementation details.
Concrete data types (CDT) is the implementation of the ADT.

The following is an overview of the ADTs that is dicussed in the course:

• Core implementations

– Arrays
– Nodes / linked list

• Structure types

– Linear structures

∗ Linked list
∗ Stack
∗ Queues

– Non-linear structures

∗ Trees
∗ Graphs
∗ Hash tables

3.2 Core implementations

The following ADTs can be used to implement other data structures that will be introduced in the following
sections.

8

Array
Set number of items stored in adjacent memory locations. Identified by the first item.

• Access: Simple access by index. O(1)

• Insertion & deletion: Slow, as it involves shifting the surrounding items and creating a new
array. O(n)

Node
A node is an item, which can be connected to other nodes by edges. In order to access an item in a
node-based data structure, we have to traverse the nodes by following the edges.
Nodes can be directional (one-way access) or non-directional (two-way access).

Linked list
Nodes that are connected to the next node. Identified by the first node.

• Access: Slow, as we have to traverse the list from the start. O(n)

• Insertion & deletion: Fast, as we only need to change the pointers of the neighbouring nodes.
O(1)

Reversing a linked list

We can reverse a linked list in O(n) time by iterating through the list and reversing the direction of
the edges using three pointers:

• Make current node point to previous node
• Save previous node
• Move to next node
• Repeat

Example implementation: 4.6

Hare and tortoise algorithm

We can find the middle node of a linked list in O(n) time by using two pointers:

• Move one pointer one node at a time
• Move the other pointer two nodes at a time
• When the fast pointer reaches the end, the slow pointer will be at the middle

Example implementation: 4.7

9

3.3 Linear structures

Push pop & access
Stacks and queues are concepts that extend from a linear list of items.
They have the following characteristics:

• Only one item can be accessed at an instance of the data structure.
• Items cannot be inserted or removed freely.

In a stack / queue, push / enqueue (in) means adding an item, and pop / dequeue (out) means
removing an item. Only the out item can be accessed.

Stacks & Queues

• Stack: First In, First Out (FIFO).
• Queue: Last In, First Out (LIFO).

Accessing out items is O(1). Accessing / operating on other items is O(n).

3.4 Non-linear structures

3.4.1 Graph

Graph
Nodes which can connect to multiple other nodes. (Allow loops)

Implementations:

Adjacency matrix
For a node with n nodes, we have a n× n matrix. If nodes i, j is connected, then the element Mij is
1. If the connection edge is non-directional, then Mij = Mji = 1.

• Space: O(n2) - better for dense graphs (more edges).
• Access (check): O(1) for determining if there is a connection between two nodes.
• Access (process): O(n2) for processing all edges of the graph.

0 1 2
0 1 0

1 0 1

0 1 0



10

Adjacency list
For a node with n nodes, we have an array with n items. Each item in the array is a list of nodes
that the current node is connected to.

• Space: O(n+ e) - better for sparse graphs (less edges).
• Access (check): O(e) for determining if there is a connection between two nodes.
• Access (process): Better for sparse graphs as less than n2 elements.

0 1 2
[[2], [1, 3], [2]]

Traversal:

Breadth-first search (BFS)

Visits nodes at the increasing order of distance from the starting node.

• Queue starting node
• Repeat until queue is empty, visit queue node
• Add unqueued adjacent nodes to queue and mark as queued.

Example implementation: 4.8

Depth-first search (DFS)

Visit the furthest nodes and backtrack.

3.4.2 Trees

Trees
Nodes which has one parent and can connect to multiple children.

3.4.3 Hash tables

Hash table
Dynamic set of key-value pairs, where items are stored in an array with fixed size. To access an
item, the index is found by a hash function.
A collision occurs when h(k1) = h(k2). We deal with it by different methods.

• Access: Θ(1), O(n)

• Insertion & deletion: Θ(1), O(n)

Where h is the hash function and k is the key.
Note: Hash tables are a specific implementation of a dictionary. Each item in the hash table table is
called a bucket or a slot

11

Load factor

α =
n

m

Where n is the number of items, and m is the size of the table.

Hash function
A hash function is a function that takes a key and returns an index. It should be in relation to the
size of the table m.
The most basic hash function is the division method:

h(k) = k%m

A good value of m should be a prime number that is not close to a power of 2.

Collision & resolution
When h(k1) = h(k2), we have a collision. We can resolve it by:

• Chaining: Store items in the same slot by appending them to the linked list in the slot.
• Open addressing: Store items in another slot.

For opening addressing, we have the following implementations and the slot where the item is stored
is:

Method Slot
Linear probing A[h(k) + i]

Quadratic probing A[h(k) + i2]

Double hashing A[h(k) + i · h′(k)]

Where i is the number of collisions.

Primary clustering
Primary clustering occurs in open-addressing hash tables that use linear probing for collision
resolution, which can lead to clusters of occupied slots.
This can lead to longer search times for items that are stored in the same cluster.

12

Finding the average number of slots inspected for unsuccessful search
General steps:

1. For each slot, assume a collision and resolve until an empty slot is found, and count the steps
(no. of slots inspected). We usually count nil slots as well.

2. Sum and divide by m

Notes:

• For double hashing, we must consider the second hash function. In other resolution
methods, we already assumed a collision so the first hash function does not matter. Refer to
example for detailed steps.

Example: 4.9

Average number of slots inspected for successful search
General steps:

1. For each slot, count the number of items in the slot.
2. Sum and divide by m

13

4 Examples & questions bank

Example 4.1 Solving a recurrence relation with subsitution method 1.1

(lvl 1) : f(n) = 2f(n− 1) + 1

(lvl 2) : f(n− 1) = 2f(n− 2) + 1

↑ f(n) = 2(2f(n− 2) + 1) + 1

= 4f(n− 2) + 2 + 1

(lvl 3) : f(n) = 2(2(2f(n− 3) + 1) + 1) + 1

= 8f(n− 3) + 4 + 2 + 1

(lvl k) : f(n) = 2kf(n− k) + 2k − 1

f(1) = f(n− k) = 1 =⇒ k = n− 1

∴ f(n) = 2n−1f(1) + 2n−1 − 1

= 2× 2n−1 − 1

= 2n − 1

Example 4.2 Proving with MI 1.2

Prove f(n) = 1 · 21 + 2 · 22 + · · ·+ n · 2n = (n− 1) · 2n+1 + 2

Base case: n = 1

LHS: f(1) = 1 · 21 = 2

RHS: (1− 1) · 21+1 + 2 = 0 · 22 + 2 = 2

Inductive step: Assume f(n) holds true ∀n ≤ k :

f(k + 1) : LHS = f(k) + (k + 1) · 2k+1

= [(k − 1) · 2k+1 + 2] + (k + 1) · 2k+1

= (k − 1) · 2k+1 + (k + 1) · 2k+1 + 2

= (2k) · 2k+1 + 2

= k · 2k+2 + 2

= ((k + 1)− 1) · 2(k+1)+1 + 2

= RHS

∴ Statement holds true ∀ n > 0

Example 4.3 Disproving Big O notation 2.2

14

Consider T (n) = 3n3 + 1, to show that T (n) ̸= O(n2):

3n3 + 1 ≤ c · n2 ∀ n ≥ n0

3n3 + 1 ≤ c · n2 ∀ n ≥ 2

3n+
1

n2
≤ c ∀ n ≥ 2

As this expression cannot hold true for all n ≥ 2 for a specific c value, we can conclude that T (n) ̸= O(n2).

(Example: if c = 10 the equation does not hold when let’s say n = 100)

Example 4.4 Proving Little o notation 2.2

To show that T (n) ∈ o(n4):

3n3 + 1 < c · n4 ∀ n ≥ n0

3

n
+

1

n4
< c ∀ n ≥ n0

As this express can hold true for any c > 0 with sufficiently large n0, we can conclude that T (n) ∈ o(n4).

(Example: if c = 1 the equation holds with n0 = 100)

Example 4.5 Identifying asymptotic growths 2.2

Example 1: T (n) = 3n3 + 1 =⇒ O(n3) Ω(n3) Θ(n3) o(n4) ω(n2)

Example 2: n2 ∈ O(2n) (n2 ≤ 2n order of growth. This is one of the many satisfying g(n). The useful g(n)
would be: n2 ∈ O(n2))

Example 3: n log n ∈ Ω(elog n) (n log n ≥ n)

Example 4.6 Example implementation of reversing a linked list 3.2� �
def reverse_linked_list(head):

prev = None
current = head
while current:

next = current.next
current.next = prev
prev = current
current = next

return prev� �
Example 4.7 Example implementation of finding the middle node of a linked list 3.2

15

� �
def find_middle_node(head):

slow = head
fast = head
while fast and fast.next:

slow = slow.next
fast = fast.next.next

return slow� �
Example 4.8 Example implementation of BFS 3.4.1� �
def bfs(mtx, start):

q = Queue()

q.enqueue(start) # queue start node
qd = [start]

while not q.isEmpty():
cur = q.dequeue() # visit node
print(cur)
for x in mtx[cur]:

if x not in qd: # if not queued
q.enqueue(x) # put in queue
qd.append(x) # mark as queued� �

Example 4.9 Example of finding the average number of slots inspected for unsuccessful search of built hash
table with resolution method double hashing ??

m = 5, h(k) = k mod 5 with double hashing f(i) = i · h′(k), h′(k) = 2− (k mod 2).

Slot Value
0 79
1
2 22
3
4 54

num \Slot 0 1 2 3 4
count(k mod 2 = 0) 4 1 3 1 2
count(k mod 2 = 1) 2 1 2 1 3

Therefore the average is (4+1+3+1+2)+(2+1+2+1+3)
5×2 = 2

16

	Recursion
	Recurrence relation
	Mathematical induction

	Algorithm Analysis
	How do we assess time complexity?
	Asymptotic notation
	Time complexity of code

	Data Structures
	Overview of data structures
	Core implementations
	Linear structures
	Non-linear structures
	Graph
	Trees
	Hash tables

	Examples & questions bank

